
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012710
TITLE: Fault Isolation using Process Algebra Models

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Thirteenth International Workshop on Principles of Diagnosis
[DX-2002]

To order the complete compilation report, use: ADA405380

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012686 thru ADP012711

UNCLASSIFIED



Fault Isolation using Process Algebra Models

Dan Lawesson', Ulf Nilsson', Inger Klein 2

'Dept of Computer and Information Science
2Dept of Electrical Engineering

Link6ping University, 581 83 Link6ping, SWEDEN
{danla,ulfni}@ida.liu.se inger@isy.liu.se

Abstract follows we (somewhat conservatively) view the log as a set of
error messages. In addition a system may contain a number ofWe investigate the problem of doing post mortem critical events that are unobservable, but which may explain

fault isolation for concurrent systems using a be- all observable alarms.

havioral model. The aim is to isolate the action

that has caused the failure of the system, the root The ultimate aim of our fault isolation method is to single

action. The naive approach would be to say that out the error message that explains the actual cause of the fail-

a certain action is the root action iff it is a logical ure, or possibly an unobservable critical event explaining the

consequence of the model and observations that the observations. That is, we aim to discard error messages which

action is the first "bad thing to happen". This, how- are definitely effects of other error messages, while trying to

ever, is a strong requirement and puts high demand isolate error messages (or critical events) which explain all

on the model. In this paper we describe the con- other messages. In contrast to message filtering, we can thus

cept of strong root candidate, a relaxation of the find failing components that have not manifested themselves
naive approach. The advantage of determining the in the error log, if the failing of the component is a logical
strong root candidate directly from model and ob- consequence of the model and the observations. Given the

servations is that the set of traces consistent with size of the software it is not possible to use the code directly
model and observations need not be explicitly com- - we have to rely on a model of the software. In this paper we

puted. The property of strong root candidate can consider finite state machine models expressed in a process
instead be determined on-the-fly, thus only comput- algebra. The process algebra is chosen here because it allows

ing relevant parts of the reachable state space. for more straightforward formal reasoning than for example
state charts, but the contribution of this work - the fault iso-
lation - relies only on the labeled transition system semantics

1 Introduction of the model. In practice, the aim is to use a behavioral model
In this paper we describe a model-based [Hamscher et al., that is an artifact of the software development process, such
19921 approach to fault isolation in object oriented control as state charts. Then there is no extra cost associated with
software. The work is motivated by a real industrial robot maintaining a correct model when the software evolves, since
control system developed by ABB Robotics. The system is then so does the model.
large (the order of 106 lines of code), concurrent, has an ob- In standard Al diagnosis literature, see e.g. [Reiter, 19871,
ject oriented architecture and is highly configurable, support- a diagnosis is a (minimal) set of failed components explain-
ing different types of robots and cell configurations. Since the ing the observations. But for dynamic systems (systems with
system is time- and safety-critical the first priority, in case of state) a diagnosis is often defined as the set of all traces, or tra-
a failure, is to bring the system to a safe state; alarms that go jectories, consistent with the observations (see e.g. [Cordier
off are logged and can be analyzed when the system comes et al., 2001; Console et al., 20001). However, this definition is
to a stand-still. The faults considered are primarily hardware generally insufficient to isolate the origin of the fault(s), and
faults, and therefore we rely on the assumption that the failing requires post-processing to pin-point e.g. the faulty compo-
hardware has some software counterpart that is affected by nent(s). Our approach is more direct and focuses on finding
the failure of the hardware. In addition we make the common the alarm that explains (is consistent with) all observables:
single fault assumption, i.e. that a system failure is caused by given the system description, expressed in a simple process
only one fault (but resulting in cascading alarms). algebra, and the observations, we try to infer the origin of the

The log thus contains partial info!rmation about the events fault using properties of actions involving the temporal or-
that took place at the approximate time of the system failure. der, expressed in a specification language based on a subset
However, the order in which messages are logged does not of the temporal logic CTL, originally developed for verifi-
necessarily reflect the way error messages propagate - the cation [Clarke et al., 1999]. This resembles the process of
system is concurrent and safety critical actions may have to model checking and as in the case of model-checking there
be taken before error reporting takes place. Hence, in what is no need for calculation of the entire state space (obviously



equivalent to the set of traces consistent with model and ob- completed process. We assume that every A/n E S (Stop
servations) if the temporal logic formulae are evaluated by excepted) has a defining equation of the form
constructing the state space on-the-fly.

Our approach also bears some resemblance to that of Sam- A(x) d= p.
path et al. [Sampath et al., 1995]. However their work is
mainly concerned with diagnosability in discrete event sys- A E s is a partialimapgfomet t he object
tems; i.e. to detect, within finite delay, whether a certain type Sit c 0 is called the initializing object, the state Mainit

of fault has occurred. While our approach is amenable only to Main is called the initial process state.
post-mortem analysis, the work reported in [Sampath et al., Let is 0 the alprocess state.
19951 is mainly intended for monitoring and on-line detection Let or:O -+ P] be a process state, o h iands Pao.
and diagnosis. By i -[o -+ P] we denote the process state which is almost

The rest of the paper is organized as follows: In Section identical to o- except possibly at o. That is
2 we describe the behavior language that will be used to de- P ifx = o
fine a transition relation, that defines the set of all possible '1o ý-+ P](x) o:(x) otherwise
behaviors (i.e. traces). In Section 3 we provide rules for en-
tailment of some predicates of interest from configurations The behaviors of our system are described by the labeled tran-
and the traces that can follow from them. Finally, we outline sition rules in Figure 1. Our transitions are of the form
ongoing and future work in Section 4.

2 A behavior language where ca (the observation) is a set of pairs of the form (o, a)

A behavior model can be expressed in different ways, and we representing action a occurring in object o.
have chosen to use a process algebra. No matter which for- There are four transition rules, sync, internal, new and def.
malism and notation that is used, the semantics should pro- The rule sync allows two objects to synchronize their state
vide a labeled transition relation that describes the state tran- transitions and optionally exchange values. In our limited al-
sitions of the modeled system. In this section we describe a gebra, the only values that can be transmitted are object iden-
process algebra influenced by CCS [Milner, 19891 and give tifiers. However, the idea is not to model all system behavior,
the necessary semantics, but to have a system model that reveals synchronization and

system structure. The rule internal allows a single object to
2.1 Processes perform a transition by itself. Creation of new objects is han-

Our process language is constructed from the following syn- dled by the rule new, and def allows for exchanging a state

tactic categories 
with its definition.'

"* a finite set £ of action labels denoted by a in our meta Example

language. Every action label is equipped with an associ- Typically, a system is described by creating a main process
ated arity n > 0. that sets up the system structure. Figure 2 shows an example

"of such a system. Process Main creates three objects and
* a set O of object id• denoted by o. runs Setup which tells the objects about each other via the
"* a finite set S of states A with associated arity n > 0. init call. This is needed since when started, a process does

We consider four types of actions (denoted by a in our meta not know anything about its environment. After init, each
language)r object will act as a peer-to-peer node, as showed in Figures 3

(the system) and 4 (object details). Objects can send requests

"* Send actions of the form o:-(t), where o is the recipient to each other, and sometimes the answer to a request is a fail-
object, - an n-ary action label and t is an n-tuple of ure, and then the system is brought to a halt by transmission
object id's or variables. of down messages.

"* Receive actions of the form a(x) where a is an n-ary
action label and x is an n-tuple of variables. 3 Fault Isolation

"* Internal actions of the form a, where a is a nullary action The available information when doing fault isolation is a sys-
label, tem model and an observation (in our case a message log).

"We use the term scenario to refer to that information. In the
i New-actions of the form new (o, P) where o w . and P following we overload the term action in the context of sce-

narios to mean pairs (o, a) E 0 x £ where o is an object
A process is described by a process expression, denoted by identifier and a is an action label. Some of the actions in a
P (and occasionally Q), and given by the following abstract system are critical actions, actions that are associated with
syntax system failures.

'P ::= A(t) i X ca. Thus a scenario is a quadruple (--- Crit, Logp, Log,),
iEI where -- is a process state transition relation, Crit C 0 x£

where I is a finite index set. Sums are usually written sim- 'Since we rely on a finite state space model, we do not allow
ply cal.P 1 + ca2 .P2. We reserve the nullary state Stop for a unbounded creation of objects via the new rule.



syc.o(oi) = 1PI ± oj : i(t).P±+P2  T-(oj) :=P 3 +±a(x).Q +±P4

internal : o)=PI+a +2

aT -4 aT[oi H-* P]

,o(oi) = P1 + new (o, Q).P +±P2 4o7[o ý- P] [o H+4 Q] 40-7'
new: 

0 ý' 7

def : a(oi) =A(t) A(x) =e P o7[oi ý- P~x/t}] -4 -7'
a -2.7

Figure 1: Process transition rules (t is a vector of object id's)

Servent(this, x, y) df-f x91(this).Wait(this, x, y) + y:Te-q(this).Wait(this, x,y)
req(o).Cornpute(this, x, y, o) + down O.D own

Wait (t his, x, y) df okO(. Servent (this, x, y) + f aiIQ).FaiI(x, y)

Cornpute(t his, x, y, o) dNo:okO(. Servent (this, x, y) + o:f ailO).Servent (this, x, y

FailI(x, y) d~f x:downO.FaiI(x, y) + y:down (.FailI(x, y)
Down def
Dow Stop

Sf~ init(this, x, y).Servent (this, x, y)
Main def

Mai new(si, S).new(s2, S).new(s3 , S).SetUP(sl, $2, SO)

Figure 2: A process algebra example



is the set of critical actions, Logp C 0 x £ is the set of holds, while nocrit holds in configurations where no critical
actions that have been observed (i.e. the message log), and action has occurred. The predicate end holds in configura-
Logn C 0 x £ is the set of actions known not to have oc- tions where there is no next configuration.
curred (i.e. the observable actions not contained in the mes- We define entailment of logical formulae from the follow-
sage log). Thus, we assume that a synchronized action is ing syntax:
logged as two separate actions - one from the sending object " ::= T VT I T AT I •" I EF(,F) I EX(,F) I AG(F) I
and one from the receiving. This allows modeling of mes- end okend I nocrit
sage sending with unknown receiver and is no severe limi-
tation since it is possible to express receiver information by seen(a) I present(a) I enabledroot(a)
having a model where the desired action labels are unique and In order to be able to define entailment for the desired predi-
receiver object id thus becomes unambiguous. cates, we will need the following. We use =* for the reflexive

A configuration, denoted C, is the symbol I or a pair (o-, 1) transitive closure of =::. First we define entailment for basic
where o- is a process state and I C 0 x £ is a set of actions. connectives.
The following rules defines the configuration transition rela- C J= F1  C • F2  C • F2
tion • for a given -- and Logn. C I= F1 A F2  C • F1 V F2

0 --a 0' a n Logn =0 C I= Fi C _ _ F
(07,1) ý (.71, 1U a) C J= F, v F2 C J= ýF

We will be reasoning about temporal order, so we need to
- -2 .7' ca A Log7 0 define temporal logic operators.

07, 1) =: I C =*: C' C' ý= F

The configuration ({init ý-+ Main}, 0) is called the initial C • EF(F)
configuration. The configuration I_ is called aforbidden con- C : C' C' • F
figuration and represent configurations that are allowed by
the behavioral model, but inconsistent with the observations C 1= EX(F)
at hand. We see configurations as snapshots of the system C' 1= F whenever C = C'
state of a given scenario, and the configuration transition re-
lation describes the behavior of the system. Fault isolation is W as a(f)
the process of finding the first critical action that has occurred We also need entailment for a few helper predicates. The
in a given scenario, the root action. Given the single fault as- predicate end determines if a configuration lacks successor
sumption and a system model that is properly designed, the (i.e. end =-iEX (true) where true is entailed by every con-
first critical action to occur in the system is the cause of the figuration), seen(o) is true when an action ha has occurred
failure, and nocrit holds when no critical actions have yet occurred.

An action a is present in a scenario if the system model -3C', C =: C' a E I Va E 1, a ý Crit
and the observation entails the occurrence of a. An action a C J= end (o7, 1) ý= seen(a) (o7, 1) J= nocrit
is an enabled root if the assumption that a is root action is Now we have the tools needed to define the desired pred-
consistent with the observations and the system model. We icates. If we have reached a configuration from which the
introduce the concept of strong root candidate, and say that a system cannot continue to execute and all actions in Logp are
strong root candidate is an action that is both present and an seen, then the configuration is an okend, unless the configura-
enabled root. tion is a forbidden configuration. It is thus one of the possible

3.1 Predicate rules halting configurations, given the scenario at hand.
Vo c Logy,,C 1= seen(o) C 1= end C $1

Given a certain scenario (--, Crit, Logp, Logn), we wish to

reason about properties of reachable configurations. There- C J= okend

fore we define predicates, that correspond to the interesting If it is true for all reachable configurations that whenever
properties, by determining for which configurations they hold we have reached an okend, we have seen action a, we con-
true. Since we are interested in strong root candidates, we clude that the presence of a is entailed from observations and
need to formally define present actions and enabled root ac- system model.
tions. Thus we define the predicate present(a) that holds C J= AG(-okend V seen(a))
in configurations where action a must occur sometime in the C = present(a)
future and the predicate enabledroot(a) that holds for con- If there is a reachable configuration C1 such that no critical
figurations where it is consistent to assume that a may be the actions has taken place, and there is a configuration step that
first critical action to occur. In defining these two predicates, takes us from C1 to C2 where the critical action a has oc-
we will need some helper predicates. We will use okend that curred, we conclude that a is an enabled root if it is possible
holds in configurations that correspond to consistent ending to reach an okend from C2 .
states of the system. An ending state is a state where no more = EF(nocrit A EX(seen(o) A EF(okend)))
observable actions occur, i.e. when the system has reached a
final state. In a configuration where a has occurred, seen(a) C J= enabledroot(a)



3.2 Reasoning about behavior Lawesson et al., 20011 aims to strengthen the diagnostic capa-

Given a scenario, the strong root candidates are the actions oa bility while still using standard and state-of-the-art modeling
for which notations. Behavior in UML is often expressed using state-

charts, and process algebras provide a textual representation
({init H-+ Main}, 0) ý= present(a) A enabledroot(a) of state machines. Of course, enforcing the software devel-

oper to construct complete statecharts for all classes is not
If we have no strong root candidates or more than one strong realistic in large software systems; hence, reasoning must be
root candidate, the system model is not strong enough for ef- able to cope with incomplete or missing behavioral descrip-
ficient fault isolation. If, on the other hand, we have exactly tions. Our approach should also be extended to deal with the
one strong root candidate, we assume that we have pinpointed special features characteristic of object oriented software sys-
the true cause of the fault. This is reasonable to assume, since tems such as classes and inheritance. Below we sketch some
the action found is the only one that is known to have occurred partial solutions to such issues, which will be addressed in
(its presence is entailed by the scenario) and it is consistent our future work.
with the given scenario to assume that the action is a root
event. 4.1 Classes behaviors and inheritance

Of course there is still a possibility that there are other en- Our process algebra expresses a system model as a flat set
abled root events whose presence are consistent with the sce- of the process defining equations without any hierarchy. In
nario, but assuming one of them to be root would demand an an object oriented design, the system behavior is partitioned
explanation to why the strong root candidate (proven to be into classes. Furthermore, inheritance allows for a hierarchy
present!) is not the root. of classes. We implement simple schemas called classes in

order to achieve the partitioning and (inheritance) hierarchy.
3.3 Prototype implementation Thus, in the following a class is a scheme that can be com-
We have designed a prototype XSB [Sagonas et al., 19941 piled to a set of process defining equations. A class C may
program that takes a system model and observations as input inherit parts of its characteristics (e.g. its behavior) from a su-
and enumerates the strong root candidates. XSB is a Prolog perclass, and in that context C is referred to as the subclass.
dialects using tabulation (memoization) to improve termina- A state inheritance sequence
tion. Given the system model in Figure 2 and facts stating S H-+ [A1 , A 2 , ... ,An]
that any sending of fail or down indicates system failure,
i.e. those actions are critical actions, and the observations is a declaration saying that state S in the superclass is refined
that (02, fail) has not occurred and (o3 , fail) has occurred, by states A1 , A 2, ... , An in the subclass where A1 is the de-
the XSB Prolog program computed (or, fail) to be the single fault state (i.e. the substate entered when entering the super-
strong root candidate, state S). When compiling the class to process equations, the

The system consists of three objects that all execute the inheritance sequence describes how the defining equations
same process. See Figure 4 for an automata representation from the superclass should be used. Thus, we implement a

of a similar process (parameters are not explicit in the au- simple form of inheritance as refinement. The syntax used

tomata). Consider the critical actions. Obviously, no down for defining classes below is

message can be root action since it will always be preceded N = (S, I), D
by a fail action, and neither can (02, fail) be root action since where N is the name of the class, S is the name of the super-
it is known to not have occurred at all. This leaves us with class (if any), I is the set of state inheritance sequences and D
(o1, fail) and (03, fail). It is consistent with the system model is a set of process defining equations. If there is no superclass
and the observations to assume that (03, fail) is the root ac- we write N = 0, D.
tion, since if 02 receives the fail from 03, then ol can send
fail to 03 afterwards. We cannot prove that (03, fail) has hap- ExampleLacking formal tools, we outline the approach by an example.
pened, however. This can be done for (or, fail), and therefore In the following we define two classes C1 and C2 , where C2
it is the only action that is both enabled root and present. refines the state A in C1 with states C and D. We say that

Thus, having some intuition of the system makes the fault states C and D refine state A.
isolation described above almost trivial, but the key motiva-
tion of this work is to formalize and automate this intuition. C, = 0, o
4 Future Work A df b.B

In previous work with Larsson [Larsson et al., 2000; Larsson, B _=f a.A

19991 we studied the fault isolation problem using a structural }
model. A key feature of that approach is the use of software C2 = (C1 , {A H+ [C, D]}), {
engineering models, in particular UML [Object Management C d-ef d.D
Group, 1999] class diagrams. Such a model can be devel- def
oped and maintained at a relatively low cost being an inte- D = c.C
grated part of the software development process. The work B L-_f e.D
presented here and in our previous work [Lawesson, 2000; }



Now, C 2 may be compiled to the following process equa- cooperation with ABB Robotics, and in particular Magnus
tions. Larsson.

C 2 :C = b.C 2 :B + d.C2 :D

C2 :B def a.C2 :C + e.C 2 :D References
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Figure 3: A global picture of the example system consisting of the objects ol, 02 and 03. Each object has behavior as described
in Figure 4.

D own1

ok! down req!

f a i l ! i i

Compute Servent Wait

fail
req ok

IFai

down!

Figure 4: An automata describing a peer-to-peer system. Sending actions are suffixed with and the rest of the actions are
receiving actions. There are no internal actions in this automata.

Propagator, = O, {

Main def init(x).OK(x)
OK(x) def failO.Failing(x)

Failing(x) dýf log.Failed(x) + nolog.Failed(x)

Failed(xl, x 2 , ... , xn) =f xl:f ailO.Failed(x) +... + xn:failO.Failed(x)}

Breakable = (Propagator, {}), {
OK(x) d.f crit.Failing(x)

}
Figure 5: Definitions of the classes Propagator and Breakable


